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The Relationship Between Fractal Geometry and Fractography

J. J. Mecholsky, Jr.
Department of Materials Science & Engineering

University of Florida I-..

Gainesville, FL 32611

and -

S. W. Freiman , .
National Institute of Standards & Technology .

Gaithersburg, MD 20899

ABSTRACT

Fractal geometry has been used to describi irregular fracture surfaces in a quantitative way. The

fractal dimensional increment has been related to tl~e fracture toughness of the material through the elastic

modulus and a characteristic structure parameter,-alJ. The study of fractography has shown the

relationship between the flaw-to-mirror size ratio and the fracture toughness. An experimental observation

has shown that the fracture toughness is related to the elastic modulus through another structure

parameter, bo. Combining all of these relationships leads to the conclusion that the fractal dimensional

increment, D*, is directly related to the flaw-to-mirror size ratio. This rnote shows th-et experirmental

measurements of the fractal dimension and the flaw-to-mirror size ratio on glasses, a glass ceramic,

polycrystalline ceramics and a single crystal all agree with the prediction. The implication of this finding

is that there is a linear scaling law in operation at fracture between the energy of crack initiation and

branching and is reflected in the features on the fracture surface.

Fractal geometry is being used in many fields of materials science, physics,

chemistry and engineering because it can be applied to describe, relatively easily,
shapes and processes which qre non-linear and seemingly complexl, 2. Self-similarity
and scale invariance are characteristics of (scaling) fractals. Self-similarity means that
multiple features on the surface appear the same. Scale invariance means that a feature
at one level of magnification is related to another feature at another magnification
through a scalar magnification constant. Fracture is one of the phenomena that has
been modelled using fractal geometry3-8. Fractography has been shown to be
quantitqti-,vPlv relnlted to the .trcss at failure, the nature of the stress state, the amount
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of residual stress and the size of the fracture initiating crack9 The purpose of this note
is to demonstrate the relationship between fractography and fractal geometry.

Fractal objects are characterized by their fractal dimension, D, which is the
dimension in which the proper measurement of a fractal object is made. For example,
if we had a plane square, then the only dimension in which to make a meaningful
measurement is 2, i.e., the area of the square. The length or volume of a square is
meaningless. This same concept is generalized for fractals which are allowed to have
non- integer dimensions. Thus, a plane square with "bumps" out of the plane would
have dimension, 2.D*, where D* is the fractional part of the fractal dimension and
represents the amount of tortuosity out of the plane. An object with a fractal
dimension of 2.1 (D* = 0.1) would be relatively flat and and an object with D=2.9 (D*
= 0.9) would almost be a volume filling object. If the same relatively flat "bumpy"
plane was measured by a contour line, then the fractal dimension would be D = 1.1,
but D* would still be 0.1. Of course, this latter relationship only holds for self-
similar fractals of which fracture surfaces appear to be a representation8.'0. The
fractal dimension can be measured in a number of ways. One of these has been called
the slit-island techniques in which the length of part, or all, of the contour of an
"island" that appears from polishing of an embedded fracture surface is measured.
This measurement is made repeatedly using different starting measurement rulers.
The highest point of the fracture surface is measured first and subsequently (lower)
areas are measured. Generally, this i,6,a random section on the fracture surface. Thus,
an average representation of the roughest portion on the fracture surface is usually
obtained.

It has been shown previously that fundamental relationships can be derived
between the fractal dimensional increment, D*, and the fracture toughness of a
material in the form of the critical stress intensity factor, Kic 8,10:

KIC = E ao1/2 D* U2 = Y(O) ofc 1/2 (1)

where E is the elastic (Young's) modulus, ao is a parameter having the units of length,
Y(O) is a gecmetric constant dependent on geometry of the crack and loading
condition, of is the applied stress at fracture and c is the crack size. The relationship
between KIC and D* is based on experimental observations8,11• 12 and the relationship
between Kic and c is based on fracture mechanics and experimental confirmation'3,14.
"[he measurement of D* is an average property of the entire fracture surface and a
measure of its tortuosity. The flaw size is a measure of the critical flaw area locally
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around the fracture origin. Figure 1 shows a schematic of a fracture surface depicting
the origin and the surrounding tortuous topography.

There are regions surrounding the fracture initiating crack known as mirror,

mist and hackle which are related to the stress at fracture's. The radial distances from
the origin to the demarcations between the regions have become known collectively as
"mirror" radii. The first region is generally a relatively smooth (mirror) region, the

second region is a slightly stippled (mist) rcgion and the third region is a very course
(hackle) region. This last region ends with macroscopic crack branching. The
distances rl,r2 and r3 represent the boundaries at which mist, hackle and crack

branching occur, respectively. These boundaries may or may not be symmetric about

the fracture origin depending on the stress distribution, shape of the crack or elastic

anisotropy (in the case of single crystals)16. It was first observed experimentally'7 that
the stress at failure, (f, is related to these features:

(ifrjt/ 2 = Mj (2)

whcre rj is either rl, r2 or r3 corresponding to the "mirror" constant Mj. This

relationship has been shown to hold for a wide variety. of materials. Kirchner-and

Kirchner' 8 and Kirchner and Conway19 have shown that the above is a special case of a

more general fracture mechanics approach. They assumed that the formation of mist,
hackle and crack branching occur at a constant characteristic stress intensity factor.
This approach makes it necessary to modify Equation (2) through a crack border

correction factor, Y(0), where 0 is the angle from the surface to the interior, i.e. 0= 0

to 90., i.e.,

KBj = Y(0)o rj 1/ 2  (3)

where KBj is the crack-branching stress intensity factor. This correction accounts for

the fact that the stress intensity is not constant along the crack front. Equation (2) is

only valid for measurements made along the tensile surface for materials fractured in

flexure, whereas, if we use Eq. (3), the measurement may be taken anywhere along the
fracture mirror boundary. Notice that at the surface, KBj = Y(0) Mj. [ Y(O) = 1.24 for

a semi-circular crack in flexure or tension which is small relative to the thickness of
the beqrnl In adldition to Eq. (.i), KBj has been Cxpetimentaiky related Lo E 15.20:

KBj = E bo1/ 2 (4)
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where bo is a parameter with the units of length. Notice if we assume that the length
parameters ao and bo are in someway related to one another, i.e., ao a bo,, then the
combination of Eqs. (1), (3) and (4) results in the relation:

ryc 1t l/D* (5)

If we compare rl/c to l/D* as in Table 1 for a variety of ceramic materials, we see
that the proportionality constant between ao and bo appears to be 1 for the mirror-mist
boundary.

There are several interesting implications of the relationship demonstrated in
Eq.(5) and shown in Table 1. The fractal dimensional increment is obtained from the
analysis of the tortuosity of the entire fracture surface whereas the ryc ratio is obtained
from a measure of the "in plane" distance from the initiation of fracture to the point of
optically observed branching. At first, these quantities may seem unrelated. However,
if we realize that the tortuosity that we observe optically merely means that the
perturbations above a smooth plane are large enough to reflect light, then we can see a
direct relation between the out-of-plane tortuosity and the "in-plane" distance at which
this occurs.

In the past, there has been disagreement among investigators as to the form of
the scaling law during fracture4-8. Ihv'stigators have the choice of scaling
characteristic microstructural features4 which occur at different levels such as atom
clusters, microcracks, pores, grains, etc. or of scaling energy5 ,6, i.e., the energy of
bond breaking may be some multiple of the energy to initiate crack propagation and
this, in turn, is the same multiple of macroscopic branching. It has been debatable as
to the form of scaling, i.e., power law4-7 or linear 8. The agreement of experimental
data with Eq. (5) (Table 1) implies that there is a scaling between the crack size and
the point of branching and between the energy of crack initiation and of crack
branching. Thus, analyses considering an energy scaling or a structural (geometric)
scaling are equivalent. Moreover, the scaling is linear in energy or geometry. It
appears significant that two parameters obtained by very different analyses on the
fracture surface are similar in magnitude. More specifically, ao is obtained from a
measurement of the tortuosity of the fracture surface, while bo relates the bonding

strength (at a strain level approximately zero) to the energy required to branch. The
schematic in Figure 1 shows the regions from which the fractal dimensional increment
is obtained and that from which the toughness measurement is made from the fracture
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initiating crack size or mirror regions. In general, the fractal dimensional increment
data are obtained from a random section on the fracture surface and usually in a
macroscopically tortuous region. The agreement between D* and c/ri shown in Table
1 suggests that there is a relationship between the local region of fracturc at the origin
and the resulting topography all across the fracture surface. We can speculate that the
absolute magnitudes of ao and bo are in some way related to the volume of material
surrounding the crack tip in which the fracture process takes place, i.e., a process-zone
size. Passoja21 has suggested that this scaling is a generai phenomena that is observed
in many materials and is related to the atomic structure.
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Table I - Relationship Between D* and C/ri.

MATERIAL* l/D* ri/c

Borosilicate Glass [22] 11 10

Calcium Aluminosilicate Glass [22] 11 10

Pyroceram 9606 [23,241 6 3

Alumina 123,241 3 4

PZT [23,241 5 7

ZnS [24,251 6 6

ZnSe [23,241 3 4

Si (100)(110) [17,221 8 8

WC-Co [26, 271 4-5 4-6

*Data from references shown in 1 1.

Figure 1 - Schematic of a Fracture Surface Showing the Origin and "Slit Island"

Region. The fracture origin is local to one point on the fracture surface. The

contour on the fracture surface known as the slit island, in general, is taken

from the more tortuous region of the fracture surface. The length, L, of the
contour perimeter between A and B is measured using different scales, E. The

slope of log L versus log F is the fractal dimensional increment, D*.
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